본문 바로가기

딥러닝과 머신러닝

간단한 CNN model 만들기 (2024-06-20)

 
import torch
import torch.nn as nn
import torch.optim as optim
 

 

 

 
# 배치크기 * 채널(1 : 그레이 스케일 / 3 : 컬러) * 너비 * 높이
inputs = torch.Tensor(1, 1, 28, 28)
print(inputs.shape)
 

 

 
# 첫번째 Conv2D

conv1 = nn.Conv2d(in_channels = 1, out_channels=32, kernel_size = 3, padding ='same')
out = conv1(inputs)
print(out.shape)
 
# 첫번째 MaxPool2D
pool = nn.MaxPool2d(kernel_size = 2)
out = pool(out)
print(out.shape)
 
 
# 두번째 Conv2D
conv2 = nn.Conv2d(in_channels = 32, out_channels=64, kernel_size = 3, padding ='same')
out = conv2(out)
print(out.shape)
 
# 두번째 MaxPool2D
pool = nn.MaxPool2d(kernel_size = 2)
out = pool(out)
print(out.shape)
 

 

 
flatten = nn.Flatten()
out = flatten(out)
print(out.shape)
 

 

 
fc = nn.Linear(3136, 10)
out = fc(out)
print(out.shape)
 

 

 

 

 CNN으로 MNIST 분류하기

import torchvision.datasets as datasets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
 
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)

 
# train
train_data = datasets.MNIST(
    root = 'data',
    train = True,
    transform = transforms.ToTensor(),
    download = True
)
 
# test
test_data = datasets.MNIST(
    root = 'data',
    train = False,
    transform = transforms.ToTensor(),
    download = True
)
 
 
loader = DataLoader(
    dataset = train_data,
    batch_size = 64,
    shuffle = True
)

imgs, labels = next(iter(loader))
fig, axes = plt.subplots(8, 8, figsize = (16, 16))

for ax, img, label in zip(axes.flatten(), imgs, labels) :
    ax.imshow(img.reshape((28, 28)), cmap='gray')
    ax.set_title(label.item())
    ax.axis('off')
 

 

model = nn.Sequential(
    nn.Conv2d(1, 32, kernel_size = 3, padding = 'same'),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2),

    nn.Conv2d(32, 64, kernel_size = 3, padding = 'same'),
    nn.ReLU(),
    nn.MaxPool2d(kernel_size=2),

    nn.Flatten(),
    nn.Linear(64 * 7 * 7, 10)
    ).to(device)

print(model)
 
 
optimizer = optim.Adam(model.parameters(), lr=0.001)
epochs = 10
for epoch in range(epochs):
    sum_losses = 0
    sum_accs = 0

    for x_batch, y_batch in loader:
        x_batch = x_batch.to(device)
        y_batch = y_batch.to(device)
        y_pred = model(x_batch)
        loss = nn.CrossEntropyLoss()(y_pred, y_batch)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        sum_losses = sum_losses + loss
        y_prob = nn.Softmax(1)(y_pred)
        y_pred_index = torch.argmax(y_prob, axis=1)
        acc = (y_batch == y_pred_index).float().sum() / len(y_batch) * 100
        sum_accs = sum_accs + acc

    avg_loss = sum_losses / len(loader)
    avg_acc = sum_accs / len(loader)
    print(f'Epoch {epoch:4d}/{epochs} Loss: {avg_loss:.6f} Accuracy: {avg_acc:.2f}%')
 
 
test_loader = DataLoader(
    dataset = test_data,
    batch_size = 64,
    shuffle = True
)

imgs, labels = next(iter(loader))
fig, axes = plt.subplots(8, 8, figsize = (16, 16))

for ax, img, label in zip(axes.flatten(), imgs, labels) :
    ax.imshow(img.reshape((28, 28)), cmap='gray')
    ax.set_title(label.item())
    ax.axis('off')
 
 
model.eval() # 모델을 테스트 모드로 전환

sum_accs = 0

for x_batch, y_batch in test_loader :
  x_batch = x_batch.to(device)
  y_batch = y_batch.to(device)
  y_pred = model(x_batch)
  y_prob = nn.Softmax(1)(y_pred)
  y_pred_index = torch.argmax(y_prob, axis=1)
  acc = (y_batch ==y_pred_index).float().sum() / len(y_batch) * 100
  sum_accs = sum_accs + acc

avg_acc = sum_accs / len(test_loader)

print(f'테스트 정확도는 {avg_acc:.2f}% 입니다.')